Survey Sampling Theory and Methods Second Edition Date: 28 April 2011, 06:29
|
It is gratifying that our Publishers engaged us to prepare this second edition. Since our first edition appeared in 1992, Survey Sampling acquired a remarkable growth to which we, too, have made a modest contribution. So, some addition seems due. Meanwhile, we have received feedback from our readers that prompts us to incorporate some modifications. Several significant books of relevance have emerged after our write-up for the first edition went to press that we may now draw upon, by the following authors or editors: SA? RNDAL, SWENSSON and WRETMAN (1992), BOLFARINE and ZACKS (1992), S. K. THOMPSON (1992), GHOSH and MEEDEN (1986), THOMPSON and SEBER (1996), M. E. THOMPSON, (1997) GODAMBE (1991), COX (1991) and VALLIANT, DORFMAN and ROYALL (2000), among others. Numerous path-breaking research articles have also appeared in journals keeping pace with this phenomenal progress. So, we are blessed with an opportunity to enlighten ourselves with plenty of new ideas. Yet we curb our impulse to cover the salient aspects of even a sizeable section of this current literature. This is because we are not inclined to reshape the essential structure of our original volume and we are aware of the limitations that prevent us from such a venture. As in our earlier presentation, herein we also avoid being dogmatic—more precisely, we eschew taking sides. Survey Sampling is at the periphery of mainstream statistics. The speciality here is that we have a tangible collection of objects with certain features, and there is an intention to pry into them by getting hold of some of these objects and attempting an inference about those left untouched. This inference is traditionally based on a theory of probability that is used to exploit a possible link of the observed with the unobserved. This probability is not conceived as in statistics, covering other fields, to characterize the interrelation of the individual values of the variables of our interest. But this is created by a survey sampling investigator through arbitrary specification of an artifice to select the samples from the populations of objects with preassigned probabilities. This is motivated by a desire to draw a representative sample, which is a concept yet to be precisely defined. Purposive selection (earlier purported to achieve representativeness) is discarded in favor of this sampling design-based approach, which is theoretically admitted as a means of yielding a legitimate inference about an aggregate from a sampled segment and also valued for its objectivity, being free of personal bias of a sampler. NEYMAN’s (1934) pioneering masterpiece, followed by survey sampling texts byYATES (1953),HANSEN,HURWITZ andMADOW (1953), DEMING (1954) and SUKHATME (1954), backed up by exquisitely executed survey findings by MAHALANOBIS (1946) in India as well as by others in England and the U.S., ensured an unstinted support of probability sampling for about 35 years. But ROYALL (1970) and BREWER (1963) installed a rival theory dislodging the role of the selection probability as an inferential tool in survey sampling. This theory takes off postulating a probability model characterizing the possible links among the observed and the unobserved variate values associated with the survey population units. The parameter of the surveyor’s inferential concern is now a random variable rather than a constant. Hence it can be predicted, not estimated. The basis of inference here is this probability structure as modeled. Fortunately, the virtues of some of the sampling designsupported techniques like stratification, ratio method of estimation, etc., continue to be upheld by this model-based prediction theory as well. But procedures for assessing and measuring the errors in estimation and prediction and setting up confidence intervals do not match. The design-based approach fails to yield a best estimator for a total free of design-bias. By contrast, a model-specific best predictor is readily produced if the model is simple, correct, and plausible. If the model is in doubt one has to strike a balance over bias versus accuracy. A procedure that works well even with a wrong model and is thus robust is in demand with this approach. That requires a sample that is adequately balanced in terms of sample and population values of one or more variables related to one of the primary inferential interest. For the design-based classical approach, currently recognized performers are the estimators motivated by appropriate prediction models that are design-biased, but the biases are negligible when the sample sizes are large. So, a modern compromise survey approach called model assisted survey sampling is now popular. Thanks to the pioneering efforts by SA? RNDAL (1982) and his colleagues the generalized regression (GREG) estimators of this category are found to be very effective in practice. Regression modeling motivated their arrival. But an alternative calibration approach cultivated since the early nineties by ZIESCHANG (1990),DEVILLE and SA? RNDAL (1992), and others renders them purely design-based as well with an assured robustness or riddance from model-dependence altogether. A predictor for a survey population total is a sum of the sampled values plus the sum of the predictors for the unsampled ones. A design-based estimator for a population total, by contrast, is a sum of the sampled values with multiplicative weights yielded by specific sampling designs. A calibration approach adjusts these initial sampling weights, the new weights keeping close to them but satisfying certain consistency constraints or calibration equations determined by one or more auxiliary variables with known population totals. This approach was not discussed in the first edition but is now treated at length. Adjustments here need further care to keep the new weights within certain plausible limits, for which there is considerable documentation in the literature. Here we also discuss a concern for outliers—a topic which also recommends adjustments of sampling weights. While calibration and restricted calibration estimators remain asymptotically design unbiased (ADU) and asymptotically design consistent (ADC), the other adjusted ones do not. Earlier we discussed the QR predictors, which include (1) the best predictors, (2) projection estimators, (3) generalized regression estimators, and (4) the cosmetic predictors for which (1) and (3) match under certain conditions. Developments since 1992 modify QR predictors into restricted QR predictors (RQR) as we also recount. SA? RNDAL (1996), DEVILLE (1999), BREWER (1999a, 1999b), and BREWER and GREGOIRE (2000) are prescribing a line of research to justify omission of the cross-product terms in the quadratic forms, giving the variance and mean square error (MSE) estimators of linear estimators of population totals, by suitable approximations. In this context SA? RNDAL (1996) makes a strong plea for the use of generalized regression estimators based either on stratified (1) simple random sampling (SRS) or (2) Bernoulli sampling (BS), which is a special case of Poisson sampling devoid of cross-product terms. This encourages us to present an appraisal of Poisson sampling and its valuable ramifications employing permanent random numbers (PRN), useful in coordination and exercise of control in rotational sampling, a topic we omitted earlier. Among other novelties of this edition we mention the following. We give essential complements to our earlier discussion of the minimax principle. In the first edition, exact results were presented for completely symmetric situations and approximate results for large populations and samples. Now, following STENGER and GABLER (1996) an exact minimax property of the expansion estimator in connection with the LAHIRI-MIDZUNO-SEN design is presented for arbitrary sa
|
DISCLAIMER:
This site does not store Survey Sampling Theory and Methods Second Edition on its server. We only index and link to Survey Sampling Theory and Methods Second Edition provided by other sites. Please contact the content providers to delete Survey Sampling Theory and Methods Second Edition if any and email us, we'll remove relevant links or contents immediately.
|
|
|