Sign In | Not yet a member? | Submit your article
 
Home   Technical   Study   Novel   Nonfiction   Health   Tutorial   Entertainment   Business   Magazine   Arts & Design   Audiobooks & Video Training   Cultures & Languages   Family & Home   Law & Politics   Lyrics & Music   Software Related   eBook Torrents   Uncategorized  
Letters: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Regression Models for Time Series Analysis
Regression Models for Time Series Analysis
Date: 10 November 2010, 05:28

Free Download Now     Free register and download UseNet downloader, then you can FREE Download from UseNet.

    Download without Limit " Regression Models for Time Series Analysis " from UseNet for FREE!

Benjamin Kedem, Konstantinos Fokianos, "Regression Models for Time Series Analysis"
W--y | 2002 | ISBN: 0471363553 | 360 pages | PDF | 6,7 MB

A thorough review of the most current regression methods in time series analysis
Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis.
Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data.
The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements.
Notably, the book covers:
* Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling
* Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm
* Prediction and interpolation
* Stationary processes
Review
the book does what it sets out to do very well and will be useful for both practitioners and researchers& -- Short Book Reviews, April 2003
"...I gladly recommend this book..." -- Technometrics, Vol. 45, No. 4, November 2003
"...can be recommended to teachers and students as material for seminars and special lectures...very useful for applied statisticians." -- Zentralblatt Math, Vol.1011, No.11, 2003
"...highly recommended..." -- Choice, Vol. 40, No. 6, February 2003
"...provides an excellent overview of modern regression methods in time series analysis...accessible and illustrative...a valuable resource to students, researchers, and practitioners. The text reflects a deep appreciation of both theory and applications, as well as a comprehensive understanding of a set of modeling frameworks that are increasingly integral to modern time series analysis." (Journal of the American Statistical Association, March 2004)
"...highly recommended..." (Choice, Vol. 40, No. 6, February 2003)
"...the book does what it sets out to do very well and will be useful for both practitioners and researchers..." (Short Book Reviews, April 2003)
"...can be recommended to teachers and students as material for seminars and special lectures...very useful for applied statisticians." (Zentralblatt Math, Vol.1011, No.11, 2003)
"...introduces the reader to relatively newer and somewhat more diverse regression models and methods for time series analysis than most standard texts." (Quarterly of Applied Mathematics, Vol. LXI, No. 2, June 2003)
"...I gladly recommend this book..." (Technometrics, Vol. 45, No. 4, November 2003)
...the book does what it sets out to do very well and will be useful for both practitioners and researchers... -- Short Book Reviews, April 2003
Download






Related Articles:
Regression   Analysis   Series   Models   Time  

DISCLAIMER:

This site does not store Regression Models for Time Series Analysis on its server. We only index and link to Regression Models for Time Series Analysis provided by other sites. Please contact the content providers to delete Regression Models for Time Series Analysis if any and email us, we'll remove relevant links or contents immediately.



Comments

Comments (0) All

Verify: Verify

    Sign In   Not yet a member?


Popular searches