Sign In | Not yet a member? | Submit your article
 
Home   Technical   Study   Novel   Nonfiction   Health   Tutorial   Entertainment   Business   Magazine   Arts & Design   Audiobooks & Video Training   Cultures & Languages   Family & Home   Law & Politics   Lyrics & Music   Software Related   eBook Torrents   Uncategorized  
Letters: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Numerical Control over Complex Analytic Singularities
Numerical Control over Complex Analytic Singularities
Date: 21 April 2011, 15:51

Free Download Now     Free register and download UseNet downloader, then you can FREE Download from UseNet.

    Download without Limit " Numerical Control over Complex Analytic Singularities " from UseNet for FREE!
The Milnor number is a powerful invariant of an isolated, complex, affine hyper surface singularity. It provides data about the local, ambient, topological-type of the hyper surface, and the constancy of the Milnor number throughout a family implies that Thom's $a_f$ condition holds and that the local, ambient, topological-type is constant in the family. Much of the usefulness of the Milnor number is due to the fact that it can be effectively calculated in an algebraic manner.The Le cycles and numbers are a generalization of the Milnor number to the setting of complex, affine hyper surface singularities, where the singular set is allowed to be of arbitrary dimension. As with the Milnor number, the Le numbers provide data about the local, ambient, topological-type of the hyper surface, and the constancy of the Le numbers throughout a family implies that Thom's $a_f$ condition holds and that the Milnor fibrations are constant throughout the family. Again, much of the usefulness of the Le numbers is due to the fact that they can be effectively calculated in an algebraic manner.In this work, we generalize the Le cycles and numbers to the case of hyper surfaces inside arbitrary analytic spaces. We define the Le-Vogel cycles and numbers, and prove that the Le-Vogel numbers control Thom's $a_f$ condition. We also prove a relationship between the Euler characteristic of the Milnor fibre and the Le-Vogel numbers. Moreover, we give examples which show that the Le-Vogel numbers are effectively calculable. In order to define the Le-Vogel cycles and numbers, we require, and include, a great deal of background material on Vogel cycles, analytic intersection theory, and the derived category. Also, to serve as a model case for the Le-Vogel cycles, we recall our earlier work on the Le cycles of an affine hyper surface singularity.

DISCLAIMER:

This site does not store Numerical Control over Complex Analytic Singularities on its server. We only index and link to Numerical Control over Complex Analytic Singularities provided by other sites. Please contact the content providers to delete Numerical Control over Complex Analytic Singularities if any and email us, we'll remove relevant links or contents immediately.



Comments

Comments (0) All

Verify: Verify

    Sign In   Not yet a member?


Popular searches