Sign In | Not yet a member? | Submit your article
 
Home   Technical   Study   Novel   Nonfiction   Health   Tutorial   Entertainment   Business   Magazine   Arts & Design   Audiobooks & Video Training   Cultures & Languages   Family & Home   Law & Politics   Lyrics & Music   Software Related   eBook Torrents   Uncategorized  

Minimal Surfaces, Stratified Multivarifolds, and the Plateau Problem (Translations of Mathematical Monographs)
Minimal Surfaces, Stratified Multivarifolds, and the Plateau Problem (Translations of Mathematical Monographs)
Date: 13 April 2011, 17:08
Product Description: Plateau's problem is a scientific trend in modern mathematics that unites several different problems connected with the study of minimal surfaces. In its simplest version, Plateau's problem is concerned with finding a surface of least area that spans a given fixed one-dimensional contour in three-dimensional space--perhaps the best-known example of such surfaces is provided by soap films. From the mathematical point of view, such films are described as solutions of a second-order partial differential equation, so their behavior is quite complicated and has still not been thoroughly studied. Soap films, or, more generally, interfaces between physical media in equilibrium, arise in many applied problems in chemistry, physics, and also in nature. In applications, one finds not only two-dimensional but also multidimensional minimal surfaces that span fixed closed ``contours'' in some multidimensional Riemannian space. An exact mathematical statement of the problem of finding a surface of least area or volume requires the formulation of definitions of such fundamental concepts as a surface, its boundary, minimality of a surface, and so on. It turns out that there are several natural definitions of these concepts, which permit the study of minimal surfaces by different, and complementary, methods. In the framework of this comparatively small book it would be almost impossible to cover all aspects of the modern problem of Plateau, to which a vast literature has been devoted. However, this book makes a unique contribution to this literature, for the authors' guiding principle was to present the material with a maximum of clarity and a minimum of formalization. Chapter 1 contains historical background on Plateau's problem, referring to the period preceding the 1930s, and a description of its connections with the natural sciences. This part is intended for a very wide circle of readers and is accessible, for example, to first-year graduate students. The next part of the book, comprising Chapters 2-5, gives a fairly complete survey of various modern trends in Plateau's problem. This section is accessible to second- and third-year students specializing in physics and mathematics. The remaining chapters present a detailed exposition of one of these trends (the homotopic version of Plateau's problem in terms of stratified multivarifolds) and the Plateau problem in homogeneous symplectic spaces. This last part is intended for specialists interested in the modern theory of minimal surfaces and can be used for special courses; a command of the concepts of functional analysis is assumed.

DISCLAIMER:

This site does not store Minimal Surfaces, Stratified Multivarifolds, and the Plateau Problem (Translations of Mathematical Monographs) on its server. We only index and link to Minimal Surfaces, Stratified Multivarifolds, and the Plateau Problem (Translations of Mathematical Monographs) provided by other sites. Please contact the content providers to delete Minimal Surfaces, Stratified Multivarifolds, and the Plateau Problem (Translations of Mathematical Monographs) if any and email us, we'll remove relevant links or contents immediately.



Comments

Comments (0) All

Verify: Verify

    Sign In   Not yet a member?


Popular searches