Invariant Distances and Metrics in Complex Analysis
Date: 27 April 2011, 08:26
|
Contents Preface I Hyperbolic geometry of the unit disc 1 Exercises 14 II The Carathr odory pseudodistance and the Carathdodory-Reiffen pseudometric 15 2.1 Definitions. General Schwarz-Pick Lemma 16 2.2 Balanced domains 18 2.3 Caratheodory hyperbolicity 27 2.4 The Caratheodory topology 29 2.5 Properties of c('f and y. Length of curve. Inner Caratheodory pseudodistance 33 2.6 Two applications 48 2.7 A class of n-circled domains 53 Notes 65 Exercises 66 III The Kobayashi pseudodistance and the Kobayashi-Royden pseudometric 71 3.1 The Lempert function and the Kobayashi pseudodistance 71 3.2 Tautness 77 3.3 General properties of k 82 3.4 An extension theorem 87 3.5 The Kobayashi-Royden pseudometric 90 3.6 The Kobayashi-Buseman pseudometric 99 3.7 Product-formula 106 Notes 108 Exercises 109 IV Contractible systems 111 4.1 Abstract point of view 111 4.2 Extremal problems for plurisubharmonic functions 115 4.3 Inner pseudodistances. Integrated forms. Derivatives. Buseman pseudometrics. C' -pseudodistances 139 4.4 Example - elementary n-circled domains 149 Notes 152 Exercises 153 V Contractible functions and metrics for the annulus 154 Notes 165 Exercises 166 VI The Bergman metric 169 6.1 The Bergman kernel 169 6.2 The Bergman pseudometric 185 6.3 Comparison and localization 190 6.4 The Skwarczynski pseudometric 195 Notes 198 Exercises 200 VII Hyperbolicity and completeness 202 7.1 Global hyperbolicity 202 7.2 Local hyperbolicity 207 7.3 Completeness - general discussion 213 7.4 Carathdodory completeness 216 7.5 Kobayashi completeness 223 7.6 Bergman completeness 230 Notes 234 Exercises 235 VIII Complex geodesics. Lempert's theorem 237 8.1 Complex geodesics 237 8.2 Lempert's theorem 243 8.3 Uniqueness of complex geodesics 255 8.4 Geodesics in convex complex ellipsoids 264 8.5 Biholomorphisms of complex ellipsoids 278 8.6 Schwarz Lemma - the case of equality 281 8.7 Criteria for biholomorphicity 285 Notes 288 Exercises 290 IX Product-property 296 Exercises 309 X Comparison on strongly pseudoconvex domains 310 10.1 Strongly pseudoconvex domains 311 10.2 The boundary behavior of the Carathdodory and the Kobayashi distances 316 10.3 Localization 326 10.4 Boundary behavior of the Caratheodory-Reiffen and the Kobayashi-Royden metrics 331 10.5 A comparison of distances 342 10.6 Characterization of the unit ball by its automorphism group 344 Notes 352 Exercises 353 Miscellanea 355 A The automorphism group of bounded domains 355 B Holomorphic curvature 356 C Complex geodesics 359 D Criteria for biholomorphicity 361 E Boundary behavior of contractible metrics on weakly pseudoconvex domains 363 Appendix 367 HF Holomorphic functions 367 PSH Subharmonic and plurisubharmonic functions 370 PSC Domains of holomorphy and pseudoconvex domains 375 AUT Automorphisms 379 Automorphisms of the unit disc 379 Automorphisms of the unit polydisc 379 Automorphisms of the unit Euclidean ball 380 GR Green function and Dirichlet problem 380 MA Monge-Ampere operator 383 H Hardy spaces 384 References 387 List of symbols 400 Index 405
|
DISCLAIMER:
This site does not store Invariant Distances and Metrics in Complex Analysis on its server. We only index and link to Invariant Distances and Metrics in Complex Analysis provided by other sites. Please contact the content providers to delete Invariant Distances and Metrics in Complex Analysis if any and email us, we'll remove relevant links or contents immediately.