Sign In | Not yet a member? | Submit your article
 
Home   Technical   Study   Novel   Nonfiction   Health   Tutorial   Entertainment   Business   Magazine   Arts & Design   Audiobooks & Video Training   Cultures & Languages   Family & Home   Law & Politics   Lyrics & Music   Software Related   eBook Torrents   Uncategorized  

Graphs, Dioids and Semirings: New Models and Algorithms (Operations Research/Computer Science Interfaces Series)
Graphs, Dioids and Semirings: New Models and Algorithms (Operations Research/Computer Science Interfaces Series)
Date: 28 April 2011, 11:31
The origins of Graph Theory date back to Euler (1736) with the solution of the celebrated "Koenigsberg Bridges Problem"; and to Hamilton with the famous "Trip around the World" game (1859), stating for the first time a problem which, in its most recent version – the "Traveling Salesman Problem" -, is still the subject of active research. Yet, it has been during the last fifty years or so—with the rise of the electronic computers—that Graph theory has become an indispensable discipline in terms of the number and importance of its applications across the Applied Sciences. Graph theory has been especially central to Theoretical and Algorithmic Computer Science, and Automatic Control, Systems Optimization, Economy and Operations Research, Data Analysis in the Engineering Sciences. Close connections between graphs and algebraic structures have been widely used in the analysis and implementation of efficient algorithms for many problems, for example: transportation network optimization, telecommunication network optimization and planning, optimization in scheduling and production Systems, etc.
The primary objectives of GRAPHS, DIOIDS AND SEMIRINGS: New Models and Algorithms are to emphasize the deep relations existing between the semiring and dioid structures with graphs and their combinatorial properties, while demonstrating the modeling and problem-solving capability and flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures, which either extend usual algebra (i.e., semirings), or correspond to a new branch of algebra (i.e., dioids), apart from the classical structures of groups, rings, and fields.

DISCLAIMER:

This site does not store Graphs, Dioids and Semirings: New Models and Algorithms (Operations Research/Computer Science Interfaces Series) on its server. We only index and link to Graphs, Dioids and Semirings: New Models and Algorithms (Operations Research/Computer Science Interfaces Series) provided by other sites. Please contact the content providers to delete Graphs, Dioids and Semirings: New Models and Algorithms (Operations Research/Computer Science Interfaces Series) if any and email us, we'll remove relevant links or contents immediately.



Comments

Comments (0) All

Verify: Verify

    Sign In   Not yet a member?


Popular searches