Earthquake Engineering: Application to Design Date: 28 April 2011, 03:06
|
Learn to design code-compliant, earthquake-resistant structures with this practical guide Earthquake Engineering demonstrates how to design structural members and joints for seismic resistance. The text guides readers through dozens of structural designs, documenting how to perform each step, make the necessary calculations, and adhere to relevant design codes. Most other texts on seismic design focus on theory and the construction of idealized structures; this text is a radical departure, presenting actual tested design methodologies that protect structures from the devastation of earthquakes. All the design methods presented by the author comply with the current U.S. building codes. References to these codes are provided throughout the text, helping readers understand how they are integrated into an overall structural design. Everything readers need to create sound designs, from analysis to design implementation, is provided, including: * Dozens of worked problems throughout the text * Complete reference chapters dedicated to matrices, differential equations, and numerical analysis * Latest results of ongoing seismic research, including how these studies are likely to influence future design projects * The latest 2006 IBC, highlighting significant variations from the 2000 and 2003 editions of the code * Detailed coverage of seismic design for steel moment-resisting frame structures (SMRF), as well as braced-frame steel, concrete, masonry, and wood-framed structures This text, with its many worked problems, is ideal for upper-level undergraduates and graduate students. Now that the seismic engineering provisions of the IBC Code apply to the entire United States, this text should also guide practicing engineers not yet exposed to seismic design in designing code-compliant, earthquake-resistant structures. From the Back Cover Learn to design code-compliant, earthquake-resistant structures with this practical guide Earthquake Engineering demonstrates how to design structural members and joints for seismic resistance. The text guides readers through dozens of structural designs, documenting how to perform each step, make the necessary calculations, and adhere to relevant design codes. Most other texts on seismic design focus on theory and the construction of idealized structures; this text is a radical departure, presenting actual tested design methodologies that protect structures from the devastation of earthquakes. All the design methods presented by the author comply with the current U.S. building codes. References to these codes are provided throughout the text, helping readers understand how they are integrated into an overall structural design. Everything readers need to create sound designs, from analysis to design implementation, is provided, including: * Dozens of worked problems throughout the text * Complete reference chapters dedicated to matrices, differential equations, and numerical analysis * Latest results of ongoing seismic research, including how these studies are likely to influence future design projects * The latest 2006 IBC, highlighting significant variations from the 2000 and 2003 editions of the code * Detailed coverage of seismic design for steel moment-resisting frame structures (SMRF), as well as braced-frame steel, concrete, masonry, and wood-framed structures This text, with its many worked problems, is ideal for upper-level undergraduates and graduate students. Now that the seismic engineering provisions of the IBC Code apply to the entire United States, this text should also guide practicing engineers not yet exposed to seismic design in designing code-compliant, earthquake-resistant structures.
|
DISCLAIMER:
This site does not store Earthquake Engineering: Application to Design on its server. We only index and link to Earthquake Engineering: Application to Design provided by other sites. Please contact the content providers to delete Earthquake Engineering: Application to Design if any and email us, we'll remove relevant links or contents immediately.
|
|
|